
From Livingstone to SMV

Formal Verification for Autonomous Spacecrafts

Charles Pecheur I and Reid Simmons 2

RIACS / NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.

pecheur@ptolemy, arc. nasa. gov

2 Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

re ids@cs, cmu. edu

Abstract. To fulfill the needs of its deep space exploration program,

NASA is actively supporting research and development in autonomy soft-

ware. However, the reliable and cost-effective development and validation

of autonomy systems poses a tough challenge. Traditional scenario-based

testing methods fall short because of the combinatorial explosion of possi-

ble situations to be analyzed, and formal verification techniques typically

require a tedious, manual modelling by formal method experts. This pa-

per presents the application of formal verification techniques in the devel-

opment of autonomous controllers based on Livingstone, a model-based

health-monitoring system that can detect and diagnose anomalies and

suggest possible recovery actions. We present a translator that converts

the models used by Livingstone into specifications that can be verified

with the SMV model checker. The translation frees the Livingstone de-

veloper from the tedious conversion of his design to SMV, and isolates

him from the technical details of the SMV program. We describe differ-

ent aspects of the translation and briefly discuss its application to several

NASA domains.

1 Introduction

As NASA's missions continue to explore Mars and beyond, the great distances

from Earth will require that they be able to perform many of their tasks with

an increasing amount of autonomy, including navigation, self-diagnosis,and on-

board science. For example, the Autonomous Controller for the In-Situ Propel-

lant Production facility,designed to produce spacecraft fuelon Mars, must oper-

ate with infrequent and severely limited human intervention to control complex,

real-time, and mission-criticalprocesses over many months in poorly understood

environments [4].

While autonomy offerspromises of improved capabilities at a reduced opera-

tional coat, there are concerns about being able to design,implement and verify
such autonomous systems in a reliable and cost-effective manner. Traditional

scenario-based testing methods fallshort of providing the desired confidence

level, because of the combinatorial explosion of possible situations to be ana-

lyzed.

Often, formal verification techniques based on model checking x are able to

el'ficiently check all possible execution traces of a system in a fully automatic

way However, the system typically has to be manually converted beforehand

into the syntax accepted by the model checker. This is a tedious and complex

process, that requires a good knowledge of the model chacker, and is therefore

usually carried externally by a formal methods expert, rather than by the system

designer himself.

This paper presents the application of formal verification techniques in the

development of autonomous controllers based on Livingstone, a model-based

health management and control system that helps to achieve this autonomy by

detecting and diagnosing anomalies and suggesting possible recovery actions. We

present a translator that converts the models used by Livingstone into specifi-

cations that can be verified with the SMV model checker from Carnegie Mellon

University. The translator converts both the Livingstone model and the specifi-

cation to be verified from Livingstone to SMV, and then converts any diagnostic

trace from SMV back to Livingstone. It thereby shields the Livingstone applica-
tion designer from the technicalities of the SMV model checker.

Sections 2 and 3 respectively present the Livingstone health management

system and the SMV model checker. Section 4 introduces our translator and

describes its different parts. Section 5 discusses its application to several NASA

projects, Section _3develops some comments on the nature of the verification

problem for autonomy model, and Section 7 draws final conclusions.

2 Livingstone

Livingstone is a model-based health monitoring system developed at NASA

Ames [9]. It uses a symbolic, qualitative model of equipment to infer its state

and diagnose failures. Livingstone is one of the three parts of the Remote Agent

(RA), an autonomous spacecraft controller developed by NASA Ames Research

Center conjointly with the Jet Propulsion Laboratory. The two other compo-

nents are the Planner/Scheduler, which generates flexible sequences of tasks for

achieving mission-level goals, and the Smart Executive, which commands space-

craft systems'to achieve those tasks. Remote Agent was demonstrated in flight

on the Deep Space One mission (DS-I) in May 1999,marking the firstcontrolof

an operationalspacecraftby AI software[6].Livingstoneisalsoused inother ap-

plicationssuch as the controlofa propellantproduction plantforMars missions

and the monitoring of a mobile robot.

The functioningofLivingstoneisdepicted inFig. I.The Mode identification

module (MI) estimatesthe currentstateofthe system by trackingthe commands

issuedto the device.Itthen compares the predictedstateof the device against

observationsreceived from the actualsensors.Ifa discrepancy isnoticed,Liv-

ingstone performs a diagnosisby searchingfor the most likelysetofcomponent

iAs opposed tothosebasedon theoremproving,whichcan provideeven more general
resultsbut requirean even more involvedand skilledguidance.

q.
state &

__(

Executive

goal

,_f .II "_

Spacecraft _)4---

i commands

Fig. 1. Livingstone mode identification (MI) amd mode recovery (MR)

mode assignments that are consistent with the observations. Using this diagno-

sis, the Mode Recovery module (MR) can compute a path to recover to a given

goal configuration

The model used by Livingstone describes the normal and abnormal functional

modes of each component in the system. Livingstone describes components us-

ing a declarative formalism called Model Programming Language (MPL), which

has a Lisp-like syntax. Components are parameterized and are described using

variables taking qualitative, discrete values. For each component, a set of modes

is defined identifying both its nominal and failure modes. Each mode specifies

constraints on the values that variables may take when the component is in

that mode, and how the component can switch to other modes (by definition,

spontaneous transition to any failure mode can happen from any mode). The

Livingstone model thus represents a combination of concurrent finite-state tran-

sition systems. For example, Fig. 2 presents a simple MPL model for a valve,

with a variable flow ranging over {off, low, nominal, high}. It has two nominal

modes open and closed and two failure modes stuck-open and stuck-closed.
The closed mode enforces flo,=off and allows a transition do-open to the

open mode, triggered when the cad variable has value open.

3 Symbolic Model Checking and SMV

Model checking is a verification technology based on the exhaustive exploration

of a system's achievable states. Given a model of a concurrent system and an

expected property of that system, a model checker will run through all po_i-

ble executions of that system, including all possible interleavings of concurrent

threads, and report any execution that leads to a property violation.
Classical, explicit-state model checkers such as SPIN [5] do this by generating

and exploring every single state. In contrast, symbolic model checking manipu-

lates whole _ts of states at once, implicitly represented as the logical coaditio_

(defvalues flow (off low nominal high))

(defvalues valve-cmd (open close no-cmd))

(defcomponent valve (7name)

(:inputs (cmd :type valve-cmd))

(:attributes ((flow ?name) :type flow) ...)

(closed :type ok-mode :model (off (flow ?name))

:transitions ((do-open :when (open cmd) :next open) ...))

(open :type ok-mode ...)

(stuck-closed :type fault-mode ...)

(stuck-open :type fault-mode ...))

Fig. 2. A simple MPL Model of a valve

that those states satisfy.These conditions are encoded into data structures called

Binary Decision Diagrams (BDDs) [I],that provide a compact representation

and support very efficientmanipulations. Typically, a BDD of the current set

of states is combined with a BDD of the transition relation to obtain a BDD

of the next set of reachable states. Symbolic model checking can address much

larger systems than explicit state model checkers, but does not work well for all

systems: the complexity of the BDDs can outweigh the benefits of symbolic com-

putations, and BDDs are stillexponential in the size of the system in the worst

case. While symbolic model checking has traditionally been applied to hardware

systems, it is increasingly being used to verify software systems, as well.

SMV, from Carnegie-Mellon University (CMU) [2], is one of the most pop-

ular symbolic model checkers. An SMV specification uses variables with finite

types, grouped into a hierarchy of module declarations. Each module states its

local variables, their initial value and how they change from one state to the

next. Properties to be verified can be added to any module. The properties are

expressed in CTL (Computation Tree Logic). CTL is a branching-time tempo-

ral logic, which means that it supports reasoning over both the breadth and

the depth of the tree of possible executions. For example, the CTL formula

AG flow=high states that Always (for all executions) Globally (all along each

execution), the flow is high.

4 Verification of Livingstone Models

The Livingstone engine performs complex computations using large-size data

structures capturing its knowledge about the model. In order to apply model

checking to the autonomous controller as a whole, we would need an SMV spec-

ification of the Livingstone engine and its data structures, including the Living-

stone model. Producing such a specification would be an arduous and error-prone

task. Furthermore, the size of the data structures involved would severely limit

the tractability of model checking.

Alternatively, the autonomy model can be considered as a high-level program

that is "executed", in a somewhat unusual way, by Livingstone. The Livingstone

Livingstone 4

' .Pt ,,.. s.v J
Speciflca tinn: _FDF_ Specfflcatlon_- r

Fig. 3. Three kinds of translation between MPL and SMV

program itself is a more complex, but also more stable and better understood

part, built around well-documented algorithms. Since it remains basically un-
changed between applications, the verification of its correctness can be done once

and for all by its designers and is not addressed here. From the point of view of

its users, Livingstone is viewed as a stable, trustable part, just as C programmers

trust their C compiler.

Therefore, the focus of this article is on the verification of a Livingstone model

with respect to the real system that this model represents. This can be addressed

by turning this model into a representation suitable for model checking. Since

this model is specific to the application that it is used for, it is indeed where the

correctness issues are most likely to occur.

In many previous experiences in model checking of software, this translation

has been done by hand. This is usually the most complex and time-consuming

part, typically taking weeks or months, whereas the running the verification is a

matter of minutes or hours thanks to the processing power of today's computers.

The net result is that software model checking is currently mostly performed off-

track by formal methods experts, rather than by field engineers as part of the

development process.

Our goal is to allow Livingstone application developers to use model checking

to assist them in designing and correcting their models, as part of their usual
development _nvironment. To achieve that, we have developed a translator to

automate the conversion between MPL and SMV. To completely isolate the

Livingstone developer from the syntax and technical details of the SMV version

of his model, we need to address threekinds of translation,as shown in Fig.3:

- The bIPL model needs to be translatedinto an SMV model amenable to

model checking.

- The specificationsto be verifiedagainstthismodel need to be expressiblein

terms of the MPL model and similarlytranslated.

- Finally,the diagnc_tictracesproduced by SMV need to be converted back
in terms of the MPL model.

MODULEvalve

VAR mode: (open,closed.stuck-open,stuck-closed};
cmd: {open,close.no-cad};
flow: (of_,low,nominal,high_;

DEFINE faults:-{stuck-open,stuck-closed};
_NVAR mode-closed -> flow-off

TRANS (mode-closed t cmd-open) ->

(next(mode)-open I next(mode) in faults)

Fig. 4. SMV Model of a Valve

These three aspects are covered by our translator and are detailed in the

following subsections. The translator program has been written in Lisp 2 and is

about 4000 lines long.

4.1 Translation of Models

The translation of MPL models to SMV is facilitated by the strong similarities

between Livingstone models and SMV specifications. In particular, both have

synchronous concurrency semantics. The main difficulty in performing the trans-

lation comes from discrepancies in variable naming rules between the flat name

space of Livingstone and the hierarchical name space of SMV. Each MPL variable
reference, such as (flow valve-I), needs to be converted into a SMV qualified

variable reference w.r.t, the module hierarchy, e.g. ispp. inlet, valve-1, flow.

To optimize this process, the translator builds a lexicon of all variables declared
in the MPL model with their SMV counterpart, and then uses it in all three parts

of the translation. Figure 4 presents the SMV translation of the MPL model in

Figure 2.

4.2 Translation of Specifications

The specifications to be verified with SMV are added to the MPL model using

a new defver ify declaration3.The defverify declarationalsodefinesthe top-

levelmodule to be verified.The propertiestobe verifiedare expressed ina Lisp-

likestylethat isconsistentwith the restof the MPL syntax; theirtranslation

function isan extensionof the one used for MPL's logicformulae. For example,

the declarationinFig.5 specifiesa CTL property tobe verifiedon module ispp.

Without enteringintodetailsofCTL, the specificationsays that,from any non-

failurestate,a high flow in valve 1 can eventuallybe reached. Fig.6 shows the

top-levelSMV module that isproduced from that declaration.

In SMV, specificationsuse the powerful temporal logicCTL. CTL isvery

expressivebut requiresa lot of cautionand expertiseto be used correctly.To

2 Lisp was a natural choice considering the Lisp-style syntax of the MPL language.
3 This is specific to the translator and rejected by Livingstone; an added empty Lisp

macro definition easily fixes this problem.

(defverify

(:structure (ispp))

(:specification

(alvays (globalty (implies

(not (broken))

(exists (eventually (high (flov valve-l)))))))

Fig. 5. Specificationfor verificationin MPL

MODUL_ main

VAR ispp : ispp;

SPEC AG ((!broken) ->

EF (ispp.inlet.valve-l.flov = high))

Fig. 6. Specificationfor verificationin SMV

alleviate this problem, the translator supports several alternative ways of ex-

pressing model properties.

Plain CTL _ CTL operators are supported in MPL's Lisp-like syntax, as illus-

trated in Fig. 5.

Specification Patterns -- Common properties such as teachability of given com-

ponent modes can be concisely expressed using pre-defined specification patterns

such as (:teachability (valve valve-I)).

Consistency and completeness are a prime source of trouble for de-

signers of Livingstone models. For example, for all transition statements

(name :when <¢ond> :next <mode>) associated to the same mode, it is re-

quired that exactly one of the conditions <cond> hold at each step. If two tran-

sitions are enabled simultaneously, then two next modes are enforced at the

same time, resulting in inconsistency. To catch these problems, the specification

pattern (:disjoin_;ness <comp>) extracts the guards of all transitions of com-

ponent <conp> in the model and generates, for each mode, a mutual exclusion

property among itstransitions. A peer pattern (:completeness <comp>) checks

that at least one guard is always fulfilled.

Auz'iliary Functions -- The translator supports some auxiliary functions that

can be used in CTL formulas to concisely capture Livingstone concepts such as

occurrence of failures,activation of commands or probability of failures.Table I

gives a representative sample. Some functions are translated solely in terms of

SMV logic expressions, while others, such as failed, require the introduction of

new variables 4.

4 The latter are omitted by default, since the new variables can cause a big penalty

on the performance of SMV.

Table 1. Some auxiliary functions for MPL model specifications

(broken heater) = Heater is in a fzaled state.
(failed heater) = On last transition, heater fzaled.

(aul_i.coamand 2) = At least two commands are activated.

(brokenproba 3) = Combined probability of currently
failed components is at most of order 3.

The probability analysis opens an interesting perspective. Failure probabili-

ties are mapped to small integer order-of-magnitude values (e.g. p = 10 -3 maps

to 3), so that the value for multiple failures can be computed by integer addition,

which is supported by SMV's BDD-based analysis. One should note, however,

that this is an approximate method, which fits well with the qualitative nature

of Livingstone models but is no substitute for a precise approach such as Markov
chain analysis.

Observers -- The translator allows the definition of observer automata, which

are cross-breeds between modules (in that they can refer to other components or

modules) and components (in that they can have modes). An observer, however,

can have no internal variables, other than keeping track of mode. Observers are

useful in some situations where the CTL specification language is inadequate for

representing the specifications that one wants to verify.

4.3 Translation of Traces

When a violated specification is found, SMV reports a diagnostic trace, consist-

ing of a sequence of states leading to the violation. This trace is essential for
diagnosing the nature of the violation.

The states in the trace, however, show variables by their SMV names. To

make sense to the Livingstone developer, it is translated back in terms of the

variables of the original MPL model. This is achieved using the lexicon generated
for the model translation in the reverse direction.

A more arduous difficulty is that the diagnostic trace merely indicates the

states that led to the violation but gives no indication of what, within those
states, is really responsible. Two approaches to this diagnosis problem are cur-

rently being investigated. One is based on using visualization tools to extxare

the trace, the other one uses a truth maintenance system to produce causal

explanations [8].

5 Applications

5.1 Deep Space One

Livingstone was originally developed to provide model-based diagnosis and re-
covery for the Remote Agent architecture on the DS1 spacecraft. The full Liv-

ingstone model for the spacecraft runs to several thousand lines of MPL code.

Usingthetranslator,we have automatically constructed SMV models and veri-

fied several important properties, including consistency and completeness of the

mode transition relations, and reachability of each mode. _ are also developing

specialized declarations to enable us to verify path reachability properties, such

as the ability of the system to transition from a fault mode to a known "safe"

mode. Using the translator, we were able to identify several (minor) bugs in

the DSI models (this was after the models had been extensively tested by more

traditional means) [7].

5.2 ISPP

The translator is being used at NASA Kennedy Space Center by the developers

of a Livingstone model for the In-Situ Propellant Production (ISPP), a system

that will produce spacecraft propellant using the atmosphere of Mars [3]. First
experiments have shown that SMV can easily process the ISPP model and verify

useful properties such as reachability of normal operating conditions or recover-

ability from failures. The current version of the ISPP model, with 1050 states, can

still be processed in less than a minute using SMV optimizations (re-ordering of
variables). The Livingstone model of ISPP features a huge state space but little

depth (all states can be reached within at most three transitions), for which the
symbolic processing of SMV is very appropriate.

6 Lessons Learned

Concrete applications have shown that the nature of the verification problem for
Livingstone models is quite distinct from the verification of a more conventional

concurrent application. A typical concurrent system is a collection of active

entities, each following a well scoped algorithm. In contrast, a typical Livingstone
module describes a passive component such as a tank, valve or sensor; it states

how this component reacts to external commands but hardly ever imposes any
kind of order of operations in the component itself. On top of that, failures

amount to unrestricted spontaneous transitions in every component that allows
them.

This resultsinstatespaces thathave a very peculiarshape:a huge branching
factor,due to allthe command variablesthat can be setand allthe failuresthat

can occur at any given step,but a very low depth,due tothe very littleinherent

sequentialconstraintsin the model. In other words, a typicalteachabilitytree

for an MPL model isvery broad but very shallow,with every state reachable
from the initialone within a few transitions.

This also affectsthe kind of propertiesthat are usefulto verify.Looking

for deadlocks makes no sense in the presenceofspontaneous failuretransitions,

though more focused teachability properties can reveal inconsistencies in the

model. More typically, though, one is interested in consistency and completeness

properties, because the declarative nature of MPL makes it very easy to come
up with an over- or under-constrained model.

7 Conclusions

Our MPL to SMV translator allows the Livingstone-baaed application developers

to take their MPL model, specify desired properties in a natural extension of

their familiar MPL syntax, use SMV to check them and get the results in terms
of their MPL model without reading or writing a single line of SMV code. This

kind of separation is an important step towards a wider adoption of verification

methods and tools by the software design community.

SMV seems to be very appropriate for certifying Livingstone models for sev-

eral reasons. First of all, the Livingstone and SMV execution models have a lot

in common; they are both based on conditions on finite-range variables and syn-

chronous transitions. Second, the BDD-based symbolic model checking is very

efficient for such synchronous systems and appears to fit well to the loosely

constrained behaviors captured by Livingstone models. Due to this good match

and to the high level of abstraction already achieved by the Livingstone models

themselves, it is possible to perform an exhaustive analysis of a direct translation

of those models, even for fairly complex models. In contrast, more conventional

software model checking applications almost always require some abstraction

and simplification stage to make the model amenable to model checking.
This work shows that verification of Livingstone models can be a useful tool

for improving the development of Livingstone-based applications. It is, however,

only one piece in the larger problem of building and validating autonomous

applications. It cannot establish that the Livingstone mode identification will

properly identify a situation (though it can establish that there is not enough

information to do it). Neither does it address the interaction of Livingstone

with other parts of the system, including real hardware with hard timing is-

sues. Other complementary approaches are needed. In this line of work, we are

currently prototyping an analytic testing approach based on a controlled execu-
sion of an instrumented version of the real Livingstone program in a simulated

environment.

References

t. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8), 1986.

2. J. R. Butch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2), June 1992,

pp. 142-170.
3. D. Clancy, W. Larson, C. Pecheur, P. Engrand and C. Goodrich. Autonomous Con-

trol of an [n-Situ Propellant Production Plant. Technology 2009 Conference, Miami,
November 1999.

4. A. R. GroGs, K. R. $ridhar, W. E. Larson, D. J. Clancy, C. Pecheur, and G. A.

Brig_,s. Information Technology and Control Needs For In-Situ Resource Utilization.
Proceedings of the 50th [AF Congress, Amsterdam, Holland, October 1999.

5. G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Ensi-

neering, 23(5), May 1997.

6. N.Muscettola,P.P.Naya&,B.Pell,and B. Williams. Remote Agent: To Boldly Go

Where No A[System Has Gone Before. Artificial [ntelllgence 103(I-2):5-48,August
1.998.

7. P. P. Nayak et al. Validating the DS1 Remote Agent Experiment. In: Proceedings of
the 5th International Symposium on Artificial Intelligence, Robotics and Automa-

tion in Space (iSAIRAS-99), ESTEC, Noordwijk, 1999.
8. R. Simmorm and C. Pecheur. Automating Model Checking for Autonomous Systems.

AAAI Spring Symposium on Real-Time Autonomous Systems, March 2000.
9. B. C. Williams and P. P. Nayak. A Model-based Approach to Reactive Self-

Con,figuring Systems. Proceedings of AAAI-_, 1996.

